Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0167623, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947402

RESUMO

Metagenomics is a powerful method for interpreting the ecological roles and physiological capabilities of mixed microbial communities. Yet, many tools for processing metagenomic data are neither designed to consider eukaryotes nor are they built for an increasing amount of sequence data. EukHeist is an automated pipeline to retrieve eukaryotic and prokaryotic metagenome-assembled genomes (MAGs) from large-scale metagenomic sequence data sets. We developed the EukHeist workflow to specifically process large amounts of both metagenomic and/or metatranscriptomic sequence data in an automated and reproducible fashion. Here, we applied EukHeist to the large-size fraction data (0.8-2,000 µm) from Tara Oceans to recover both eukaryotic and prokaryotic MAGs, which we refer to as TOPAZ (Tara Oceans Particle-Associated MAGs). The TOPAZ MAGs consisted of >900 environmentally relevant eukaryotic MAGs and >4,000 bacterial and archaeal MAGs. The bacterial and archaeal TOPAZ MAGs expand upon the phylogenetic diversity of likely particle- and host-associated taxa. We use these MAGs to demonstrate an approach to infer the putative trophic mode of the recovered eukaryotic MAGs. We also identify ecological cohorts of co-occurring MAGs, which are driven by specific environmental factors and putative host-microbe associations. These data together add to a number of growing resources of environmentally relevant eukaryotic genomic information. Complementary and expanded databases of MAGs, such as those provided through scalable pipelines like EukHeist, stand to advance our understanding of eukaryotic diversity through increased coverage of genomic representatives across the tree of life.IMPORTANCESingle-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which automates the binning of population-level eukaryotic and prokaryotic genomes from metagenomic reads. We show exciting insight into what protistan communities are present and their trophic roles in the ocean. Scalable computational tools, like EukHeist, may accelerate the identification of meaningful genetic signatures from large data sets and complement researchers' efforts to leverage MAG databases for addressing ecological questions, resolving evolutionary relationships, and discovering potentially novel biodiversity.

2.
Bioinformatics ; 36(15): 4341-4344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32426808

RESUMO

SUMMARY: As the importance of microbiome research continues to become more prevalent and essential to understanding a wide variety of ecosystems (e.g. marine, built, host associated, etc.), there is a need for researchers to be able to perform highly reproducible and quality analysis of microbial genomes. MetaSanity incorporates analyses from 11 existing and widely used genome evaluation and annotation suites into a single, distributable workflow, thereby decreasing the workload of microbiologists by allowing for a flexible, expansive data analysis pipeline. MetaSanity has been designed to provide separate, reproducible workflows that (i) can determine the overall quality of a microbial genome, while providing a putative phylogenetic assignment, and (ii) can assign structural and functional gene annotations with varying degrees of specificity to suit the needs of the researcher. The software suite combines the results from several tools to provide broad insights into overall metabolic function. Importantly, this software provides built-in optimization for 'big data' analysis by storing all relevant outputs in an SQL database, allowing users to query all the results for the elements that will most impact their research. AVAILABILITY AND IMPLEMENTATION: MetaSanity is provided under the GNU General Public License v.3.0 and is available for download at https://github.com/cjneely10/MetaSanity. This application is distributed as a Docker image. MetaSanity is implemented in Python3/Cython and C++. Instructions for its installation and use are available within the GitHub wiki page at https://github.com/cjneely10/MetaSanity/wiki, and additional instructions are available at https://cjneely10.github.io/year-archive/. MetaSanity is optimized for users with limited programing experience. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Genoma Microbiano , Anotação de Sequência Molecular , Filogenia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...